
Pakistan’s Gomal Zam Dam

The online portal will also help developing countries like Pakistan to build capacity and competence in their technical and administrative infrastructures. The maps in following figures shows:
Figure: Karachi a Metropolitan city located on the coastline of Sindh province in southern Pakistan, along a natural harbour on the Arabian Sea. (1) Turbidity and (2) Chlorophyll-a.
Figure: The Jehlum river near Mandi Bhauddin in Punjab, Pakistan. (1) Chlorophyll-a , (2) HAB indicator (probability), (3) Total Absorption, and (4) Turbidity.
Figure: The Mangla Dam is a multipurpose dam located on the Jhelum River in the Mirpur District of Azad Kashmir. (1) Chlorophyll-a , (2) HAB indicator (probability), (3) Total Absorption, and (4) Turbidity.
Figure: Gomal Zam Dam is a multi-purpose gravity dam in South Waziristan Agency of Federally Administered Tribal Areas (FATA), Pakistan. (1) Chlorophyll-a , (2) HAB indicator (probability), (3) Total Absorption, and (4) Turbidity.
Figure: Ghazi-Barotha Hydropower Project is a 1,450 MW run-of-the-river hydropower connected to the Indus River about 10 km west of Attock in Punjab, Pakistan. (1) Chlorophyll-a , (2) HAB indicator (probability), (3) Total Absorption, and (4) Turbidity.
Note: Please read the information booklet for further information on the water quality products and to learn more about the validity range of the products. Products are generated independent on any form of ground truth data, and inter-comparable over the various resolutions provided. The Chlorophyll and HAB indicator may have site-specific limitations e.g. for extremely humid, calcareous, or ferruginous waters, and can be improved with local adaptations. General restrictions are caused by clouds, optical shallow waters, or undetected artefacts from e.g. cloud shadows.
RECENT combines a data from Multiple Satellites Observations Monitor and Assess Impact from Drought in Regional Scale. Daily/Monthly Drought index data with Satellite Rainfall and Land Surface Temperature are available to Visualize and Download through this Web Site (http://iis.gic.ait.ac.th).
The RECENT service is available for countries; Bangladesh, Bhutan, Cambodia, China, India, Indonesia, Lao_PDR, Mongolia, Myanmar, Nepal, Pakistan, Philippines, SriLanka, Thailand & Vietnam.
Satellite observed Rainfall and Land Surface Temperature data are used here to obtain a daily drought product called Keetch-Byram Drought Index (KBDI), which ranges from 0 (wet condition) to 800 (dry condition). Anomaly of drought index (KBDI) which is deviation from long term average if Drought Index is an Indicator of Drought Condition. Hourly global rainfall data at 0.1° spatial resolution is obtained from GSMaP NRT System by Japan Aerospace Exploration Agency (JAXA). It is derived from microwave radiometers (e.g., TMI, AMSR-E and SSM/I) and infrared radiometers (e.g., MTSAT, METEOSAT and GOES). This is an hourly rainfall product which is available to public after 4 hours after the observations. Land Surface Temperature (LST) data are obtained from MTSAT, a weather satellite of the Japan Meteorological Agency (JMA) with a spatial resolution of 4 km. LST is observed in every 30 minutes using 4 thermal-infrared channels.
Institute of Industrial Science, University of Tokyo Japan (https://www.iis.u-tokyo.ac.jp/)
Geoinformatics Center, Asian Institute of Technology Thailand (http://www.geoinfo.ait.asian/)
Monitoring air pollutants distribution in urban areas are critical for public health and safety. A country like Pakistan with no network of advanced weather stations to extract high quality data to derive information products is very important. Trend maps of pollutants and other information parameters derived from satellite remote sensing data is a replicable technique to integrate into management decisions. This allows city management to effectively monitor visibility and air quality concerns informing public for to take effective measures.
Following are examples of the available satellite remote sensing products for air quality measurements.
Karachi, the largest city of Pakistan received heavy monsoon rain August 30, 2017. The flood in Karachi due to heavy rains is the continuation of the similar monsoon related flooding crisis in the South East Asia region (India, Bangladesh etc.).The Flood map below is derived (subset of Karachi city ) from European Space Agency (ESA)’s Copernicus Program SENTINEL-1 Synthetic Aperture RADAR (SAR) image acquired on September 01, 2017. The green color in the map shows the flooded region.
The total rainfall derived from satellite data (GPM IMERG) for Karachi from August 29-31, 2017 is shown in Figure below:
Khyber Pakhtunkhaw (KPK) provincial government in Pakistan, govern by the Pakistan Tehreek-e-Insaf (PTI) party launched a reforestation program named “Billion tree Tsunami”, in 2015 (@btap2015). Imran Khan (@ImranKhanPTI), a cricket super star turned politician is the head of PTI party, Prime Minister of Pakistan and main driver behind this massive plantation campaign to turn degraded into forested land. The important aspect of this project is to monitor and identify the growth of these plantation regions. The remote sensing and Geographic Information Systems (GIS) tools provides this near-real-time (NRT) information at low cost compared to field campaigns.
The well known method to identify and monitor land surface changes using satellite remote sensing data utilizes a combination of band thresholding and optical indices (such as Normalized Difference Vegetation Index – NDVI) to separate land surface features. Applying this approach to two separate images by a given period of time allows changes in the extent of the area of interest to be identified. The atmospheric correction to the two images separated over time, extent of land can be compared. allowing for changes to be identified. this approach will provide an excellent alternative to field level change detection methods in challenging environments across Pakistan. We tested this approach for Bannu forest region (as shown in the Figure 2). The Figure 1 shows the land cover map of Bannu region for the year 2015.
Figure 1: Land Cover map of Bannu forest region (credit to ESA CCI)
Figure 2: Map of Bannu forest region (credit to Billion Tree Tsunami website)
Two Landsat 8 images are used for this study area acquired in June 01, 2013 and June 12, 2017. The Landsat 8 images are freely available from the United States Geological Survey (USGS) “EarthExplorer” (https://earthexplorer.usgs.gov/). The images were converted into surface reflectance before NDVI calculations using a standardised approach ( for detail check http://landsat.usgs.gov/CDR_LSR.php).
Figure 3: NDVI map of Bannu forest region derived from Landsat 8 image acquired on June 01, 2013.
Figure 4: NDVI map of Bannu forest region derived from Landsat 8 image acquired on June 12, 2017.
Figure 5: NDVI map in KMZ format of Bannu forest region derived from Landsat 8 image acquired on June 01, 2013 shown in google earth.
Figure 6: NDVI map in KMZ format of Bannu forest region derived from Landsat 8 image acquired on June 12, 2017 shown in google earth.
Please contact me for more detail. email: kshahidk@gmail.com twitter: @kshahidkOttawa